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The fundamental configuration of a prospective hypersonic a i rcraf t  in which the active balance of forces 
is created by a direct-flow air-breathing jet engine in liquid hydrogen with supersonic combustion is dictated 
by its specific ftmctioning conditions. Thus, in order  to ensure the intake of air f rom the atmosphere during 
flight in a raref ied  medium the air-intake sys tem should have a reasonably wide capture area,  which will in 
fact differ very little f rom the middle cross  section of the whole aircraft .  The nozzle (second element in the 
engine system) should also have large dimensions. These engine elements should make a specific contribution 
to the aerodynamics of the aircraf t  as a whole; they are  character ized by large areas immersed in the flow, on 
which the function of carrying surfaces will to a certain extent be imposed. Hence we have the necessity of 
asymmetry  in the configurations of such surfaces and the associated essentially three-dimensional character  
of the perturbed flow. 

Let us consider the following presentation of the fundamental problem: in a three-dimensional space we 
have two specified a rb i t ra ry  closed contours l i and 12 (Fig. 1); the isobars of the unknown flow are based on 
these contours, the pressures  on the latter being specified as pi and P2, respectively.  It is required to find the 
s t ream surface passing through both contours and optimizing a certain integrated force character is t ic  of the 
tmknown surface. The problem is made specific by giving the functional of the mechanical (force) action. 
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Prac t ica l  hypersonic calculat ions make extensive use of approximate  and semiempi r i ca l  methods,  the 
chief of which include Newton's theory ,  the method of r a re fac t ion  waves,  and the tangential  cone method [1] 
(we shall subsequently cal l  these  the "pr incipal  approximate  methods").  These  methods a re  d i rec ted  at 
solving the prob lem of the p r e s s u r e  distr ibution over  the sur face  of the body in the flow. The solution of this 
p rob lem allows us to approach the question of optimizing the shape of the body as r e g a r d s  fo rce  cha rac t e r i s t i c s .  
The optimization prob lem demands reasonable  s impl ic i ty  of the a lgor i thm for  calculat ing the p r e s s u r e  at 
var ious points of the surface  so as to ensure  that the formulat ion of the problem should be nonformal .  The 
principal  approximate  methods possess  this s impl ic i ty ,  but encounter  cons iderable  difficulties when extended 
to spatial  problems and when establ ishing methods of making a reasonable  es t imate  of the i r  accuracy .  Since 
these  methods s t a r t  f r o m  essent ia l ly  differing physical  p re requ i s i t e s ,  the possibi l i ty  of giving them a unique 
analyt ical  r epresen ta t ion  on the basis of some unifying index (which would be especia l ly  useful when cons ider -  
ing possible vers ions  of combined methods) is not en t i re ly  obvious. Thus we may dist inguish th ree  main ques-  
t ions in the theory  of the pr incipal  approximate  methods:  1) the development of recommendat ions  as to the 
extension of the methods to spatial  problems;  2) a study of the possibi l i ty  of making a reasonab le  es t imat ion of 
accu racy  and const ruct ing  higher approximations;  3) the s ea r ch  for  a universa l  analyt ical  f o r m  descr ib ing  the 
methods in question. 

This paper will  be devoted to a considerat ion of these  problems in re la t ion  to the question of optimizat ion 
just  discussed.  

w To avoid having to study each method separa te ly ,  let  us s t a r t  by obtaining a sa t i s fac to ry  answer to the 
th i rd  question. At the same t ime we shall  propose a ce r t a in  fo rma l  grounding for the th ree  methods. 

Let us consider  the s t eady-s ta te ,  ax i symmet r i ca l  flow of a nonviscous and non-heat-conduct ing gas with 
a r b i t r a r y  thermodynamic  p roper t i e s  and assume the following notation: x, y, geomet r ica l  coordinates  in the 
plane of the axial c ro s s  section; p, p r e s su re ;  p ,  density; h, heat content; r  s t r e a m  function; w, veloci ty  modu-  
lus; u, v, project ions  of the veloci ty  on the x and y axes;  M, Much number;  ~ ,  inclination of the veloci ty  vec tor  
to the s y m m e t r y  axis;  S, entropy. All the dimensional  quantit ies a re  r e f e r r e d  to the cor responding  maximum 
values.  We shall  r e g a r d  the heat content h as a specif ied function of p r e s s u r e  and entropy (equation of state):  
h =h(p, S). 

Let us introduce the p r e s s u r e  p and s t r e a m  function $ as independent var iables  [2]. We shall  then have 

d~ = py(udy - -  vdx) = 9y [u ( y vd  p + yr de)  - -  v@pdp + xr d~)] 

or  

(pguyr - -  pyvxr - -  t)dr = py(vxv - -  u y p ) @ ,  l/9 = h v. 

In view of the independence of dp and de, 

uyr - -  vxr = hp/y; VXp - -  uy  v ----- O. 

The Euler  equation in the var iables  (p, r is wr i t ten  in the f o r m  

yyr + z i p  = 0 .  

This equation will be sat isf ied identically ff we assume that 

y~-/2 = (~p; u = - - a r  

(1.1) 

(1.2) 

where  ~(p, r is an a r b i t r a r y  function. Solving (1.1) for  the der ivat ives  Xp, xr ande l imina t ing  x by c ros s  dif-  
ferent ia t ion,  we obtain an equation containing only one function a: 

+ [2( '  - -  h) = 4 ]  h , ,  = 0. (1.3) 
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If the flow is i sen t ropic ,  we have S' (r  0, and the f i r s t  t e r m  in the coeff icient  of epp  in Eq. (1.3) vanishes .  
The second t e r m  in this coeff icient  is due to axia l  s y m m e t r y .  Thus in the ca se  of plane isent ropic  flows the 
coeff ic ient  of ~pp is equal to zero .  

We shal l  s eek  a solution to Eq. (1.3) in the f o r m  of a l inear  function of the s t r e a m  function 

= a(p) + b(p)~. (1.4) 

In the ca se  of i sent ropic  flow, exact  solutions of this f o r m  do in fact  exis t .  By the d i rec t  subst i tut ion of (1.4) 
into (1.3) we obtain the following o rd ina ry  s e c o n d - o r d e r  d i f ferent ia l  equations for  the functions a (i0) and b(p): 

b" = b'L(b); a " =  a'L(b). 

Here  the p r i m e s  denote de r iva t ives  with r e s p e c t  to p and L(b) 

2hp [ i h 2 L(b)----- i--K---b~ 2( i - -h) (b ' )2  + 2hpbb' + ~  P 

If a and b sa t i s fy  Eqs.  (1.5), then a function ~ of f o r m  (1.4) will  de sc r ibe  conic f lows,  s ince it follows f r o m  

signif ies  the di f ferent ia l  ope ra to r :  

+ (t -- h -- b 2) hvp ]. 
J 

(1.5) 

(1.2) that  p and ~ a r e  c o n s e r v e d  on the s a m e  l ines ,  which by v i r tue  of (1.1) and the definition of $ a r e  s t ra ight .  
Let us cons ider  the ca se  of plane flows in m o r e  detail .  In Eqs.  (1.5) the t e r m s  with the leading de r iva t ives  a r e  
then absent  and the s y s t e m  (1.5) is sa t i s f ied  by an a r b i t r a r y  function a (p) if b(p) is a solution of L(b) =0. 

The la t t e r  equation is eas i ly  integrated.  The r e s u l t  t akes  the f o r m  

b 

where  e is an a r b i t r a r y  constant ;  v (w) is the Prandt l  - Meyer  function. Thus in the plane ease  Eq. (1.3) has an 
exact  pa r t i cu la r  solution 

e --=- _____Vl - -  h s in  (v + c)* + a(p),  

having an a r b i t r a r y  function a (p) and an a r b i t r a r y  constant  c. This solution desc r ibe s  a s imple  wave ,  s ince the 
ve loc i ty  components  r e t a in  constant  values  on the i sobars .  

Thus if the function ~ depends l inear ly  on the s t r e a m  function in the a x i s y m m e t r i c a l  case ,  this  will  s ig -  
nify conical  flow and in the plane case ,  a s imple  wave.  

Ins tead of h(p, S) let us introduce the function H(p, S) f r o m  

i -- h = gP2(S)(i -- H), (1.6) 

where O (S) is an as-yet arbitrary function. Since S=S(r W =fo(S)dr will be a function of r only. After elim- 

inating the function h f r o m  Eq. (1.3) by means  of (1.6) the f o r m  of this equation will  r e m a i n  the s ame .  Simple 
convers ion  of the de r iva t ives  shows that h is s imp ly  r ep l aced  by H and r by V ("subs t i tu t ionpr inc ip le"  [3]). We 
shal l  t he re fo re  subsequent ly  make  no dist inction between the va r i ab l e s  $ and 7/. 

Let us consider  the degenera te  case  in which h depends sole ly  on S and not on the p r e s s u r e .  The equa-  
t ion hp = 1 / p  = 0 may  be t r e a t ed  as meaning infinite densi ty  in the s t r e a m .  The functional de te rminan t  

( z . v ) = _  h'~v" = 0 ;  

i .e . ,  the flow reg ion  degenera tes  into a line. 
f o r m e d  va r i ab le  ~? we r e t a i n  the notation r  

in which 

It follows f r o m  (1.7) that 

where  f is an a r b i t r a r y  function. 

In Eq. (1.6) we may  put H=0;  then q~(S) = V i  - -  h. For  the de- 
Equation (1.3) r educes  to the equation of developing su r f aces  

z 
Opp~** -- % ,  = 0, (1.7) 

g ,  = - -  cos t% (1.8) 

a,  = 1(o p), 

Subsequent in tegrat ion of the equation, for  example ,  by the comple t e - i n t eg ra l  
method,  leads to an analyt ical  fo rmula t ion  of the Newton theory  with the Buseman co r rec t ion  for  centr i fugal  
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fo rces .  The usual Newton approximat ion  is obtained f r o m  (1.8), in which we mus t  consider  that  the 4 on the 
r igh t -hand  side depends so le ly  on the p r e s s u r e .  Thus cr = - c o s  4r +b(p), where  b(p) is an a r b i t r a r y  function 
depending on the shape of the body. Hence the Newton approximat ion  is a l so  desc r ibed  by a r e l a t ionsh ip  of 
f o r m  (1.4). 

In genera l ,  accord ing  to (1,2), c i = - - ~ u d $ ,  where  the indefinite in tegral  is taken along an isobar .  It follows 
that ~ r e p r e s e n t s  the flow of m o m e n t u m  through the line p = c o n s t  in the d i rec t ion  of the s y m m e t r y  axis .  For  
the pr inc ipa l  approx imate  methods this quantity depends l inear ly  on the m a s s  of gas having m o m e n t u m  ~. 

This  c h a r a c t e r i s t i c  will  subsequent ly  be used for  genera l iz ing  the methods to spa t ia l  p rob l ems  and con-  
s t ruc t ing  higher approximat ions  by allowing for  quadrat ic  and higher powers  of the m a s s  of gas in the equations 
for  the flow of m o m e n t u m  through the i sobars .  

Depending on the method of de te rmin ing  the coeff ic ients ,  different  approx imate  methods a r e  obtained. 
For  example ,  if we r e q u i r e  that  a l inear  b inomial  should sa t i s fy  the equation of plane f lows,  then the r e m a i n i n g  
degree  of f r e e d o m  only allows us to sa t i s fy  the boundary condition of impe rmeab i l i t y  of the su r face  i m m e r s e d  
in the flow. The Construction of (r(p, r in such an approximat ion  gives a r e su l t  coinciding with the method of 
r a r e f a c t i o n  waves .  If we r e q u i r e  that the l inear  function (1.4) should sa t i s fy  Eq. (1.3) exact ly ,  then the a (p) 
and b(p) so found will  give an analyt ical  r e p r e s e n t a t i o n  of the method of tangent ia l  cones.  The integrat ion con-  
s tants  of Eq. (1.5) will  depend on the angle ,~ at the sur face .  Final ly,  if we r equ i r e  that  all  the boundary con-  
ditions should be sa t i s f ied  exact ly  in the p rob l em of the cireurnfluence of a med ium with an equation of s ta te  
h=h(S) ,  then this will  de t e rmine  the functions a (p) and b(p), subject  to the additional a s sumpt ion  that  the p r e s -  
sure  depends so le ly  on the local  angle of inclination of the sur face .  

Let us cons ider  the poss ib i l i ty  of specifying a quadrat ic  dependence of cr on r along the l ines p =const :  
(r = a + b$ + cr 2, whe re  a ,  b, c a r e  ce r t a in  functions of p r e s s u r e .  After  placing this type of function ~ in Eq. 
(1.3) the lef t -hand side will  be a polynomial  of the four th  degree  in r (S'(r 0). If we equate the coeff ic ients  
of this polynomial  to ze ro ,  we obtain an o v e r d e t e r m i n e d  s y s t e m  of f ive equations for  the t h r ee  functions of 
p r e s s u r e  a ,  b, and c. The s y s t e m  is compat ib le ,  but its solution only has f r e e d o m  with r e s p e c t  to two con-  
s tan ts :  

a ---- const; b ---- - V i  - h;  c = c V T - : - - - h ,  * 

where  c is an a r b i t r a r y  constant .  Since a is defined to the accu racy  of an a r b i t r a r y  constant ,  the constant  a is 
inessent ia l .  Thus the solution of Eq. (1.3) const i tut ing a polynomial  of the second degree  in ~ m a y  be wr i t t en  
in the f o r m  

o = -  V l  - h , 0  - -  c , ) .  

This  r e la t ionsh ip  desc r ibe s  flow f r o m  a sphe r i ca l  source .  

w In o rde r  to s tudy poss ib le  t rans i t ions  to spa t ia l  p rob lems  let us take  as independent va r i ab l e s  the 
p r e s s u r e  p and two s t r e a m  functions q and r ; we shal l  cons ider  that  the unknown su r face  l ies  among  the se t  of 
su r f aces  $ =const .  Then r and r c h a r a c t e r i z e  the m a s s  flows of gas through curv i l inea r  bounded s e c t o r s  and 
l a y e r s ,  and t h e r e f o r e  v a r y  over  l imi ted r ange s  for  s t r e a m  tubes pass ing  through the contours  l t and /2. In the  
space  of the va r i ab l e s  (p, q ,  r the reg ion  to be studied r e p r e s e n t s  a r ec t angu la r  reg ion  with boundar ies  p a r a l -  
lel  to the coordinate  axes .  

Let us cons ider  a s y s t e m  of equations for  the spa t ia l  flows of a nonviscous and non-hea t -conduct ing  gas 
with a r b i t r a r y  t he rmodynamic  p rope r t i e s  [4]. The continuity equation div (pv) -- 0, where  p is the densi ty  and 
v is the ve loc i ty  vec to r ,  is identical ly sa t i s f i ed  if the m a s s  flow densi ty  vec tor  p v  is e x p r e s s e d  in the f o r m  of 
the vec tor  product  of the gradient  of the two s ca l a r  functions (p and r : 

pv : V(P• 

A f o r m a l  t r a n s f o r m a t i o n  to the independent va r i ab l e s  (p, (p, r in the Euler  equations leads  to the re la t ionsh ips  

vi~ v2p %~ {2.1) 

a (% r a (9. r a (% ~) 

whBre v i are the projections of the velocity on the coordinate axes xi,  the index p signifying partial differentia- 
tion with respect to p. From the definition of the fttuetions (p and r we have the equations 

x ,~ lu ,  = x.p/ t ,~ = x3p/v3; ~, = i .  (2.2) 

*As in Russ i an  or iginal  - Publ i sher .  
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El imina t ing  the pro jec t ions  of the ve loci t ies  f r o m  (2.1) and (2.2), we obtain t h r ee  equations in pa r t i a l  
de r iva t ives  wi th  r e s p e c t  to the functions x i (p, r $): 

a(= i ,  =j )  (_ ~ , 
0 (q~,*) " =  ~'~=l (z"p)~ ~ (2.3)  

/)2 
- 5 - +  h=cons t=h~,  l =  6 - - i - -  ] , i <  I. 

Let us imagine a tube of r ec tangu la r  c r o s s  sec t ion  f o r m e d  by four in te rsec t ing  s u r f a c e s ,  two f r o m  each 
of the two fami l i e s  r =cons t  and r =const .  In Fig. 2 the i sobar ic  c r o s s  sec t ion  of such a tube is shown shaded.  
If AS/ a r e  the a r e a s  of the pro jec t ions  of the shaded c r o s s  sec t ion  on the th ree  coordinate  planes and Aq = 

�9 Ar is the m a s s  flow through the c r o s s  sec t ion  of such a tube,  then 

O(x~, x~)lO(% *)~ASl  }h~ 

and Eqs.  (2.3) m a y  be r e w r i t t e n  in the f o r m  

AS~] hq.~, --  vtp. (2.4) 

When the axis of the tube is a lmos t  r e c t i l i n e a r  and only the axial  ve loc i ty  component  di f fers  apprec iab ly  f r o m  
ze ro ,  Eq. (2.4) is t r a n s f o r m e d  into the o rd ina ry  re la t ionsh ip  for  one-d imens iona l  flow in a channel with a 
va r i ab le  c r o s s - s e c t i o n a l  a r ea .  

w We shal l  cons ider  that the s t r e a m  function ~b =0 on the unknown s t r e a m  sur face .  We shall  s eek  all  
t h ree  unknown functions x i in the f o r m  of polynomials  with r e s p e c t  to ~. In view of the abundance of whole-  
numbered  p a r a m e t e r s  we shal l  denote the numbers  of the coordina tes  and project ions  by the indices i, j,  l .  
Such p a r a m e t e r s  will  take only t h r ee  d i s c r e t e  values:  1, 2, 3. We shal l  denote the numbers  of the t e r m s  by 
k, m,  n and shal l  wr i t e  them,  not as indices,  but as a rguments  of the cor responding  functions.  The r anges  of 
var ia t ion  of these  quanti t ies  will be spec ia l ly  indicated. The continuous a rguments  p and ~p will  not be wr i t t en  
out. Under such conditions the f o r m  of the unknown approx imat ing  polynomials  will be 

=~ = ~ x~ ( . ) , ~ .  

Let us accept  the ru le  of summat ion  with r e s p e c t  to r epea ted  a rguments  only,  these  being spec ia l ly  
wr i t t en  out in this pa r t i cu la r  case .  If indices,  powers ,  or  who le -numbered  f ac to r s  a r e  repea ted ,  no summat ion  
is executed.  For  example ,  

(0x,? ~-~p] = ~ X i (n) Sn where Xi (n) = Ox~ (k) Ox{ (n--k) (0 ~ k ~ n). (3.1) 
n Op Op 

On the r igh t -hand  side of the la t ter  equation summat ion  takes  place over  the r epea t ed  a rgument  k but not over  
the r epea ted  index i. Analogously,  for  the square  of the veloci ty  project ion 

V{ 2 = v~ = ~ V~ (n) r V~ (n) = v~ (k) t,~ (n - k) (0 <~ k <~ n), (3.2)  
II .  

where  vi(n) a r e  the coeff ic ients  of the polynomial  

It follows f r o m  (3.2) that  

on the other  hand 

v s ( n )  = iVy(n) - -  v ~ ( k ) v i ( n  - -  k)ll2v~(O) (1 <~ k ~< n - -  t ) ;  

V - -  
Op 

i=I ~Tpl 

For  the squa re  of the veloci ty  modulus we wr i t e  

v ' ~  Y~w(n)r 

(3.3)  

(3.4) 
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Squaring Eq. (3.4), we r ewr i t e  this in the f o r m  

Cross-mul t ip ly ing  the sums and equating the coefficients  of identical powers of r  by vi r tue  of the foregoing 
summation ru le  we obtain 

V ~ ( n - - k ) [  ~ X~(k)]  = X ~ ( k ) w ~ ( n - - k )  

F r o m  this follow the r e c u r r e n c e  equations 

X~ (0) w (0) + x~ (k) w (n - -  k) -- V i (n-- k) X~ (k) 
V~ (n) = 3 ~ (t ~< k~<n)~ (3.5) 

x~ (o) 

Let us proceed  in a s imi la r  way in re la t ion  to the lef t -hand sides of the basic equations (3.3): 

Ox~xi 
o (~,, r 

n 

where  

[~x i (k) ~xj (k) 
a ~ ( n ) = ( n - - k + l ) [ - - - ~  x j ( n - - k + t ) - - ~ x i ( n - - k + t ) ]  (0~<k~<n), (3.6j 

and by r ea son  of the equations of motion (3.3) 

a~j (n) = (-- 1) ~§ ~ l -- 6 --  i - -  i. (3.7) 
Op - ' 

The la t ter  equation r e c u r r e n t l y  de te rmines  the coefficients  of the unknown functions; it follows f r o m  (3.6) and 
(3.7) that 

ox i (0) Oxj (0) t 
~ x j ( m +  1 ) - - ~  xi(m + 1) = ~-~--i {(-- t)i+JOv~(m)--g-fi 

[ox i (k) Ox~ (k) . ' 
- -  (m --  k -4- t) t ~  xj (ra - -  k +4- 1) - -  ~ z i  (m § 1 - -  k)] = ( - -  l)~+'[~j (m) (t -~< k ~ m); (3.8)  

fl ij (m) r e p r e s e n t  the r ight-hand sides of the resul tant  equations not depending on the leading coefficients  xi(m + 
1). Thus,  these  coefficients  should sa t i s fy  the l inear  sys t em of equations (3.8), which is cha rac t e r i zed  by the 
following mat r ix  of coeff icients:  

0xl (0) 0 ~1~ (m) 
0r 

0~(~ 0 o~ (o) o~ 1313(m) 

0 o~  (0) o~  (0) g~3 (m) 
o(p o(p 

The rank  of the mat r ix  should be equal to two, s ince this is the rank  of the basic determinant .  If we assume 
that all the der ivat ives  with r e spec t  to ~o differ  f r o m  ze ro ,  then the last  r equ i r emen t  is equivalent to the equa- 
t ion 

[Ox,(O)/O~lP23(m) ~- lOx2(O)/Oq)l~a(m) + [Sx3(O)/Oq)]g~(m) -= O. 

This equation imposes a re la t ionship  upon the coefficients  with o rde r  numbers  sma l l e r  than m +1, in par t icu la r ,  
for  m = 0 ,  on the functions xi(0) and thei r  der ivat ives  with r e sp ec t  to p and q~. Hence only two of these  functions 
may be r ega rded  as a rb i t r a ry .  If the solution is cons t ructed  in the fo rm of a polynomial in r up to t e r m s  of the 
o rde r  of m +1, then we may take any of the functions xi(m +1) as the th i rd  independent a r b i t r a r y  function, since 
among the equations (3.8) only two a re  l inear ly  independent, so that the two leadtng~coefficients a re  de termined 
in t e r m s  of the third.  

w As a l ready indicated, a quality c r i t e r ion  for  compar ing  the permiss ib le  s t r e a m  sur faces  is provided 
by cer ta in  cha rac t e r i s t i c s  of the mechanical  (force) action of the flow on these  sur faces .  Let us apply the usual 
p rocedure  for  determining this action, based on the integrated application of the momentum law: Let  S 1, S~ be 
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the su r f aces  of i sobars  based  on the specif ied contours  l i and l 2, and let  S be the s t r e a m  su r f ace  pass ing  
through the s a m e  contours .  The c losed  s u r f ace  e o m p r i s  ing the th ree  p a r t s  indicated is taken as the control  su r -  
f a c e .  At the initial instant this  su r f ace  del imi ts  the volume of gas to which the m o m e n t u m  law is applied. Ob- 
vious cons idera t ions  lead to the equation 

- co (o !S  
S S, 8, 

S~ . S ,  

where  n is the ex te rna l  no rm a l  to the co r re spond ing  su r face ;  Vn is the pro jec t ion  of the ve loc i ty  on this normal .  
Let R i be the pro jec t ion  of the fo rce  act ing between the flow and the su r f ace  S on the axis with number  h 

t~ = ~ pcos(n,x~)dS. 
S 

R e m e m b e r i n g  that  cos (n, x l )dS=dxidx j (l = 6 - i - j ,  i c j), Eq. (4.1) may  be wr i t t en  as fol lows: 

3 

Ri ---- ~ (Iit Iv=p, - -  Iij  tp=p), 

where  

S~ 0 (z~, %,) (4.2) 
'~j = (pSij + pvlvj) d~dr 0 (~, 4) 

k <  m,  j ~k ,  i # k ,  and all  the indices may  take  the values  1, 2, 3; 5ij is the Kronecker  symbol .  

The foregoing r e c u r r e n c e  equations (3.1), (3.3), (3.5), and (3.8) de te rmine  the coeff icients  of the integrand 
polynomial  in (4.2): 

Hence 

Here  r 0 is the c h a r a c t e r i s t i c  of the m a s s  flow through the s t r e a m  tube bounded by the su r face  S: 

R i ~ j' (4.3) (K~j Jv=w - -  t i~lwp, ) d,~; 
cpl n : O  

i .e . ,  the opt imized  act ion is sought in the f o r m  of a polynomial  in powers  of the m a s s  of gas respons ib le  for  
this action. By v i r tue  of Eqs.  (3.2), (3.8), (3.5), and (3.3) the integrand in Eq. (4.3) depends on the de r iva t ives  
8nxi(0)/Op n of all  o r d e r s  up to 2(N+1) inclusively.  These  de r iva t ives  may be r e g a r d e d  as unknown functions 
of ~ ,  s ince they a r e  ca lcula ted  for  f ixed values of P=Pl  and P=P2; i .e . ,  the total  number  of unknown functions 
is 4 (N+l ) .  Apar t  f r o m  these  actual  functions,  the i r  de r iva t ives  with r e s p e c t  to ~p a lso  enter  into the integrand 
of (4.3). Thus a f te r  the solution of the ex t r ema l  p rob lem for  the in tegra l  (4.3) the unknown s t r e a m  sur face  is 
de te rmined  by approx imate  r ep re sen t a t i ons  of the functions xi (0) in the f o r m  of polynomials  in p of degree  
2 (N +1) based  on the two ends with contours  l 1 and 12. In genera l ,  unless additional conditions of smoothness  
a r e  applied,  a b r e a k  occu r s  in the overa l l  sur face  where  the su r f aces  a r i s ing  f r o m  the two ends join. Gene r -  
al ly speaking,  we cannot demand continuity of the unknown functions with r e s p e c t  to ~0 e i ther  (for example ,  in 
the s imp le s t  case  of the s o - c a l l e d  V-shaped  bodies the contours  l~ and l 2 a re  t r iangles) .  

For N=0 a l inear  r e l a t ionsh ip  is obtained between the in tegrals  exp re s s ing  the flows of momen tu m 
through the i sobar ic  su r f aces  (analogs of the function ~) and the co r respond ing  m a s s  flows. According  to the 
foregoing d iscuss ion  this ca se  should be cons ide red  as a genera l iza t ion  of the pr incipal  approx imate  methods 
to spa t ia l  p r o b l e m s ,  the specif ic  formula t ion  of which involves the appl icat ion of additional conditions according  
to the pa r t i cu la r  method chosen.  The integrand of Eq. (4.3) contains xi(1); i .e . ,  the case  N=0  co r r e sponds  to 
r ep r e sen t a t i ons  of the coordina tes  l inear  in ~b. If for  the s a m e  additional conditions we choose N > 0, then the 
following approx imat ions ,  s t a r t i ng  f r o m  xi(2) , may  be cons idered  as co r r ec t ions  to the methods employed,  and 
the i r  r e l a t ive  values  enable  us to a s s e s s  the val idi ty  of the p rocedu re s  in question. 
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S P E C T R A L  C H A R A C T E R I S T I C S  O F  T H E  P U L S A T I O N  E F F E C T  

O F  A P L A N E  T U R B U L E N T  J E T  ON A S O L I D  S U R F A C E  

V. D. P s h e n i c h n y i  a n d  L .  R. Y a b l o n i k  UDC 532.517.4 : 533.601.1 

I N T R O D U C T I O N  

Turbulent  p r o c e s s e s  in je t s  in terac t ing  with solid su r f aces  a t t r ac t  the at tention of many  r e s e a r c h e r s  at 
this  t i m e  [1-4]. Fundamental  diff icult ies  in both computa t ional  and exper imen ta l  invest igat ions hence a r i s e  in 
studying turbulence  in the mos t  impor tant  flow domain d i rec t ly  at the sur face .  Informat ion  about p r e s s u r e  
f luctuations at the su r f ace  is an additional sou rce  of knowledge about the s t ruc tu re  of turbulence  in this  do- 
main.  Moreove r ,  data about turbulent  n e a r - w a l l  p r e s s u r e s  also have a d i rec t  applied value,  r e l a t ed  mainly  to 
p rob lems  of computing the v ibra t ions  of s t r u c t u r e  e lements  [5]. 

w 1. The p re sen t  expe r imen t  was conducted with plane a i r  je ts  i ssuing f r o m  a s lot  nozzle  of width d=15 
ram (length 350 ram) a t  ve loc i t ies  of 75-220 m / s e c .  The Reynolds number s  hence va r i ed  in the r ange  0.7- 105- 
2.1- 105, and the Much number ,  in the r ange  0.2-0.64. The jet  impinged on the f la t  su r face  of a m a s s i v e  t u rn -  
table  at d is tances  of 360-640 m m  f r o m  the nozzle  exit.  Modules with p iezoe lec t r i c  p r e s s u r e  f luctuation con-  
v e r t e r s ,  s i m i l a r  to those  desc r ibed  in [6], w e r e  mounted flush with the working su r f ace  of the s lab.  Spectral  
ana lys is  of the s ignals  f r o m  the c o n v e r t e r s  was  accompl i shed  by an SI-1 s p e c t r o m e t e r  in t h r e e - o c t a v e  f r e -  
quency bands in the 50-10,000-Hz range .  T r a n s d u c e r s  with a 1 . 3 - r a m - d i a m e t e r  detect ion su r f ace  had a p r a c -  
t i ca l ly  constant  r e s p o n s e  of about 4 p V / P a  with r e s p e c t  to the f requency  in this range .  In o rde r  to check the 
v ibra t ion  in t e r f e rence ,  the v ibra t ion  r e s p o n s e  of the t r a n s d u c e r s  was  de t e rmined  and the s lab  v ibra t ions  w e r e  
m e a s u r e d  dur ing the t e s t s .  

w It was c la r i f i ed  in an ana lys i s  of the m e a s u r e m e n t  r e s u l t s  that  the governing p a r a m e t e r s  of the 
f luctuat ing effect  of the jet on the su r face  perpendicu la r  to the jet at a d is tance x f r o m  the nozzle  exit a r e  the 
mean  c h a r a c t e r i s t i c s  (the densi ty  p ,  the axial  ve loc i ty  v, and the width 2b) of the equivalent f r e e  jet  at a d i s -  
tance  x. This ag rees  with the informat ion that  the zone of in teract ion in the case  under cons idera t ion  extends 
a dis tance on the o rde r  of the nozzle  width along the n o r m a l  to the su r face  [7, 8]. T h e r e f o r e ,  the flow in this 
domain should be de te rmined  by the f r ee  jet  c h a r a c t e r i s t i c s  at a d is tance  on the o rde r  o f x - d  or ,  for  x >> d, at  a 
d is tance x f r o m  the nozzle  exit.  It is seen  f r o m  Fig. 1 that  the values  of the spec t r a l  densi ty  of the p r e s s u r e  
f luctuations r  2v3b, r educed  to d imens ion less  f o r m ,  a r e  functions of the reduced  f requency  v b / v  and the r e l a -  
t ive  r e m o v a l  y / b  f r o m  the jet  axis in the whole range  of veloci t ies  and d is tances  x invest igated.  Three  cases  
with different  va lues  of y / b  axe p re sen ted  he re :  a) 0; b) 0.73; c) 2.7. The numbers  co r r e spond  to the fol low- 
ing values of v 0 i n m / s e c  and x / d :  1) 75, 24; 2) 75, 33; 3) 75, 43; 4) 117, 24; 5) 117, 33; 6) 117, 43; 7) 218, 24; 
8) 218, 33; 9) 218, 43. 

Leningrad. Translated from Zhurnal Prildadnoi Mekhaniki i Tekhntcheskoi F[ziki, No. 5, pp. 78-81, 
September-October, 1976. (~iginal article submitted July 22, 1975. 
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